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• Supernate: Solution of Na, Al, P, K, S, Cl, Cs, Tc, nitrates, hydroxides…

• Sludge: Solids high in Fe, Al, Zr, Cr, Bi, Sr, TRU, oxides, hydroxides….
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Hanford Tank Waste is High in Aluminum
• Estimated Al inventory is 8750 MT

• Problem:
• Large fraction of Al is in the HLW solids
• Greatly increases the volume of HLW glass

• Solution:
• Al leaching in PT to dissolve Al in HLW solids with NaOH and direct it to 

LAW vitrification

• This was originally estimated to increase the total Na inventory from 
about 48,000 MT to about 60,000 MT

• However, more recent estimates have been as high as 90,000 MT; 
currently, 77,800 MT

• Therefore, need improved strategies for Na-Al management
• One of these is to increase the ability to load Al into the HLW glass

• Reduces Na additions and LAW glass volume
• Reduces HLW glass volume
• Shortens mission
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Aluminum Loading in 
WTP HLW Glass

• BNI WTP contract minimum is 11 wt% 
Al2O3

• For the WTP baseline
• Test data were collected and process 

control models developed up to 13 wt% 
Al2O3

• DOE-ORP has supported efforts to 
develop enhancements to the WTP 
baseline

• How high could Al2O3 loadings be 
pushed?

• Specified Al-limited HLW for testing
• Glass formulation development 
• Melter testing at various scales
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Glass Formulation Development and Testing

• Crucible testing to develop optimized formulations
• Glasses characterized with respect to:

• PCT (quenched and CCC)
• TCLP (quenched and CCC)
• Crystallization vs. temperature
• CCC
• Melt viscosity 
• Melt electrical conductivity
• Materials corrosion
• Salt formation
• Melt rate

• Test results used to iteratively refine formulations to maximize
waste loadings while meeting all requirements

• Selected formulations subjected to continuous melter testing at 
various scales (DM100 and DM1200)
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Initial Glass Formulations for Aluminum-Limited HLW

• Waste loadings from 35 to 55% investigated
• Crystallization during canister cooling is the principal waste loading 

limiting factor
• Massive ingrowth of Na-Al-Si phases (e.g., nepheline) is possible
• Can cause failure to meet PCT

• Optimized formulation with 45% waste loading and 24 wt% Al2O3
meets all product quality and processing requirements
• Demonstrated in DM100 tests

• Identified slow melt rates as an issue with high-Al feeds 
• Only ~30 to 50% of the melt rate previously demonstrated for BNI with 

Fe-limited HLW streams (AZ-101, AZ-12, AY-101/C-106) under 
nominal WTP operating conditions

• Higher temperature or increased bubbling demonstrated as potential 
engineering solutions

• Melt rate screening tests used to modify feed chemistry for increased 
rates
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Example VGF Melt Rate Screening Results: 
WTP HLW Glasses with 24 wt% Al2O3

Reaction Time
30 min 45 min 60 min

30 min 60 min

Initial 
Formulation

Improved 
Formulation
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Melt Rate Improvement for WTP High-Al HLW Formulations

• Validated on DM1200 HLW Pilot Melter with integrated off-gas system
• Test 1:   1150oC, 124 lpm bubbling 1500 kg/(m2.d)
• Test 2:   1150oC,   71 lpm bubbling 1050 kg/(m2.d)
• Test 3:   1175oC,   48 lpm bubbling 1050 kg/(m2.d)
• WTP Target:       800 kg/(m2.d)
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• Rapid melt rate screening tests 
employed

• Improved formulations developed
• Higher melt rates
• Maintained 24 wt% Al2O3 loading
• Meets all processing and product 

quality requirements
• Confirmed increased melt rates in 

DM100 melter tests
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WTP HLW Pilot Melter
• Installed at Catholic University, 

Vitreous State Laboratory
• 1.2 m2, one-third scale for WTP HLW
• Prototypical off-gas treatment system

• SBS, WESP, HEME, HEPA, ACS, 
TCO, SCR, Ag-Z, PBS

• At temperature for 9 years (ongoing)
• Over 320 days feeding
• ~700,000 lbs glass made 
• Numerous WTP waste simulants 

processed
• HLW: AZ-101, AZ-102, C-106/AY-

102, C-104/AY-101, high-Al wastes, 
high-Bi waste, noble metals tests

• LAW: Envelopes A, B, and C
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Increased Aluminum Loading in WTP HLW Glasses
Demonstrated on One-Third-Scale Vitrification System
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Progress in High-Al HLW Glass Formulations for WTP

• Waste loading increased to 50 wt% (26.6 wt% Al2O3); And
• Glass production rate further increased:
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Application to DWPF
Simultaneous Enhancement of Melt Rate and Waste Loading

• Initial testing performed in late 2006 and early 2007; follow-on 
testing in 2010

• Testing overview
• “Calibration” – Ran SB3 + Frit 418 on VSL DM100 melter
• Developed high-loading glass formulations for future high-Al wastes

• Used worst-case projection for SB4, 46.1 wt% Al2O3

• Demonstrated rate enhancements with bubblers for both nominal SB3 
and new high-Al formulations

• Demonstrated incorporation of projected SWPF stream
• FY10 – Demonstrated with projected SB19 at expected nominal DWPF 

bubbling rate for 400 canisters/year
• Projected SB19 composition has 35.5 wt% Al2O3

• Developed new glass formulation and frit for SB19
• Performed DM100 melter runs
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Glass Formulations for 
SRS High-Al HLW

• Worst-Case SB4, 46.1 wt% Al2O3
• High-waste-loading fully-compliant glass 

formulation and frit developed
• 43 wt% waste loading
• 19.8 wt% Al2O3 in glass

• Worst-Case SB4 + SWPF Product
• High incorporation of SWPF product 

demonstrated
• 5.3 wt% SWPF product on oxide basis
• 4.4 wt% TiO2 + 18.4 wt% Al2O3 in glass 
• 45.3 wt% total waste loading

• SB19, 35.5 wt% Al2O3
• High-waste-loading fully-compliant glass 

formulation and frit developed
• 48 wt% waste loading
• 16.6 wt% Al2O3 in glass

0

2

4

6

8

10

12

14

16

18

B Li Na

N
or

m
al

iz
ed

 P
C

T 
C

on
ce

nt
ra

tio
n,

 g
/L SB4 SB19 DWPF-EA

0

50

100

150

200

250

1000 1050 1100 1150 1200
Temperature, C

Vi
sc

os
ity

, P
oi

se

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
on

du
ct

iv
ity

, S
/c

m

SB4 SB19 
SB4 SB19 



Melter Testing with High Aluminum HLW Streams

15

DM100 Melter Test Results
SB3 (High-Fe) and Worst-Case SB4 (High-Al)
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Results with SRS HLW Simulants are Consistent with 
Typical HLW Melt Rate Improvements with Bubbling
• Tests at 50% of DWPF scale (1.2 m2)
• Two different melter geometries (DM1000 and DM1200)
• Same number of bubbler outlets per unit area as planned for DWPF
• Multiple feed types

DWPF
Requirement 
for 400 cans/yr

Required rate 
of 1125 kg/m2/d 
confirmed in 
DM100 SB19 
tests

DM100 Tests 
with DWPF
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Summary and Conclusions
• Demonstrated that it is possible to formulate high-Al HLW glasses that have 

both high waste loading and high melt rates 

• Demonstrated Al2O3 loading in WTP HLW glasses of 24 – 26.6 wt% with no 
deterioration in melter production rate

• Demonstrated Al2O3 loading in SRS HLW glasses of 16.6 – 19.8 wt%, with 
and without SWPF product, with no deterioration in melter production rate

• Increased Al loadings reduce HLW glass volume

• Increased Al loadings also reduce the need for Na additions in pretreatment 
• Reduces LAW glass volume at Hanford
• Could reduce the need for sludge leaching at SRS

• Reduced HLW and LAW glass volumes reduce mission duration and 
disposal costs  
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