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Background — Waste Recovery from SRS Storage Tanks

Mix tank contents with 1 — 4 dual-nozzle jet mixers
Long mixing times
- Historically-based operations
- Difficult to measure / sample contents
High cost
- Operational
- Maintenance / repair / replacement
Safety impact
- Sampling hazardous materials
- Complex maintenance operations
- Combustible gas generation associated with pump mixing time
- Radiological implications
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Objective

Quantify the mixing time required to suspend sludge particles with the mixer pumps
® Expect a smaller time than historical values based on current literature
® Requires a validated calculation

Establish mixing criteria for waste processing
® Generalized mixing criteria will be widely applicable in computational applications
® Validate computational capability to calculate the mixing criteria

Benefits

® |mproved safety exposure
= Sampling operations
= Pump maintenance / replacement operations
Ensure uniformity in tank discharge flow — meet downstream WAC

@

® Reduced operating time — shorter schedules

® Reduce maintenance time

@ Significantly reduced operating and maintenance costs
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Solution Approach & Methodology

Identify data from the literature
® Grenville & Tilton (G-T) (1996, 1997)
Propose mixing indicators
® Turbulence kinetic energy
® Turbulence energy dissipation rate
® [Eddy diffusivity
Proof-of-concept calculations
® CFD simulations using G-T data from literature
® |ndependent Calculations using L-B method (PNNL)
Computational Observation

® Key turbulence parameters related to mixing indicators
® Geometry dependence / energy dissipation scales
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Solution Approach & Methodology

Eddy scales and energy cascade

® | ocal mixing via dissipation of turbulence kinetic energy

® | ength scales
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FIGURE 3-13
Form of the three-dimensional spectrum E{k,¢) in the various wavenumber ranges.

from Hinze, Turbulence, 2ed.,McGraw-Hill, 1975, p. 229.
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Mixing Mechanism

Mean bulk flow stream w
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Modeling Conditions from the Literature Data (G-T)
Tank | Tank dia. | Liquid height Iannclllr;act)l;)n Jet dia. U, Re,, | Mixing time
g m/sec (literature)
Jet
Tank A 1.68 m 1.55m 42.6° 9.4 mm 2.2 20,680 758 sec.
Tank B 1.68 m 1.55m 42.6° 26.1mm | 19.8 | 516,780 30 sec.
Tank C 36 m 11.16 17° 50 mm 19.5 | 975,000 | 4371 sec.
- - (9 numerical observation points
7 under transient modeling simulations)
o
Jet nozzle location | 2=

Nozzle exit
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Authors Jet diameter Fluid Re,,
(mm)

Tank B (present) 26.1 Water 520,000
Kiser (1963) 9.525 Water 35,000
Post (1998) 10 Air 10,000
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Computational Results

Velocity Magnitude
(m/s)
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Computational Results : Simulations for Flow Evolutions

Propagation through the tank at
t = 21 seconds
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Computational Results : Simulations for Flow Evolutions

Propagation with time
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Computational Results

(Turbulence intensity observed at Point 8 in Tank B & C)
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Mixing Mechanism

Length Scales:
Characterizing the eddies responsible for the dissipation of energy

kl.5
- Large Eddy Scale (L): | —
&
- Small eddy scales:
pk2 0.5
Taylor scale (A,): Ay = 1/1()|_£EJ _ /1OL(ReL)_0'5

5, \0-75
Kolmogorov scale (7): 7= L(_'Ok J — L(Re,_ )—0-75
eH
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Computational Results

—_—— - Large eddy scale (m)
——— - Kolmogorov length scale (m)
—_— = Taylor scale (m)
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Eddy length scales observed at Point 6 in Tank B
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Computational Results
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Summary

* Theoretical concept of using key turbulence parameters as mixing
indicators was validated by using Grenville-Tilton correlation (1996,
1997) under several different conditions.

 The recent validation results for the realizable k-¢ (RKE) turbulence
model demonstrate that key turbulence parameters, energy
dissipation rate and eddy viscosity, provide good indicators of jet
mixing.

 Based on the validation results completed in FY08, theoretical
development for turbulent mixing characteristics and its indicators
will be completed through FYO09.

FYO09 principal goal is to establish mixing criteria and to provide
“mixing time guidelines”
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Pathforward

FY-09 deliverables
e Establish mixing indicators as the fundamental criterion
e Determine required magnitude of key indicators
e Validate computational methodology (with PNNL)
e | iquid-liquid mixing recommendations
® | ow concentration, small solids (low Stokes number)
FY-10,11

® Demonstrate use of the mixing indicators established by
FY-09 work as the engineering application

® Particles, settling rate, multiphase, erosion, wall shear
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