
Hybrid Sulfur Process Overview

William A. Summers
Energy Security Directorate

April 20, 2009

SDE Info Exchange and Workshop, Aiken, SC

SRNL-STI-2009-00222



2

SRNL-STI-2009-00222

Nuclear Hydrogen Future

Heat

Modular
Helium
Reactor

High Capacity H2 Pipeline

Centralized Nuclear Hydrogen Production Plant

Time of Day/Month
H2 Storage

Thermochemical Process
H2O  → H2 + ½ O2

Industrial H2 Users

Hydrogen Fueled Future

Transport 

Fuel

O2

H2

Water

Distributed

Power



3

SRNL-STI-2009-00222

DOE Nuclear Hydrogen Initiative
Large quantities of hydrogen can be produced by splitting water through 
reliable clean power sources, e.g., heat and electricity, generated from 
nuclear energy systems.
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Nuclear Hydrogen Initiative R&D Approach

1. High Temperature Electrolysis
• Single, multi-cell stack development 

and experiments 
• Integrated Laboratory-Scale Experiment 

(ILS) ~15 kW
• Pilot Scale Exp.  ~200 kW

2. Thermochemical Cycles
• Validate thermochemical cycles 

performance potentials and 
resolve engineering issues

• ILS Experiments ~5-10 kW
• Pilot Scale Exp. ~ 0.5 - 1 MW

3. Supporting & Alternatives Activities
• Enabling technologies 

development
(membranes, catalysts) 

• Low temp Cu-Cl cycle 
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Thermochemical water-splitting

Series of coupled chemical reactions – lowers temp needed to 
thermally dissociate water

Water consumption only; all intermediates regenerated

Thermal input only (pure cycles) or thermal plus one or more 
electrochemical steps (hybrid cycles)

Extensively studied in 1970s

Over 3000 potential cycles have been suggested with 115 cycles 
reported in literature

Thermodynamics typically dictate high temperature (>800°C)

Potential for high plant thermal efficiency maximizing conversion of 
nuclear or solar energy into hydrogen
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Technology is still in early stages

High chemical-to-hydrogen weight ratios lead to large recycle 
flows and equipment sizes

Major design challenges due to corrosive chemicals, impurities, 
reactant separation, high temperature heat exchange, and 
high capital costs

Must be scalable to very large capacities (>1000 MW)

Plant must be designed for 40+ years of operation

Currently in lab-scale development stage
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Candidate Thermochemical Cycles
for Nuclear Reactors

Peak Temperature = 700 – 900 °C

Two processes are current baselines

Sulfur-Iodine Cycle (SI)

Hybrid Sulfur Process (HyS)

Other less-mature cycles under development

Calcium Bromine (former Japanese UT-3 cycle)

Copper Chloride (lower temperature)

Various less developed alternative cycles 
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Hybrid Sulfur Process (HyS)

The only 2-step, all-fluids thermochemical cycle – based on sulfur 
oxidation and reduction; only S-H-O compounds

SO2 + 2 H2O  → H2SO4 + H2         (1)
(electrochemical; 80-120 °C)

H2SO4 ↔ H2O + SO2 + ½ O2     (2)
(thermochemical; 800-900 °C)

Net Reaction:    H2O  → H2 + ½ O2              (3)
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HyS Process History

Patent for “Sulfur Cycle” issued to                                 
Westinghouse Electric Corporation 1975

Two-compartment Diaphragm Cell Built 1977
Closed-loop Process Demonstration by (W) 1978
Solar-driven Process Design Completed by (W) 1983
Development “Hiatus” 1984-2003
New Process Design work by (W) 2004
Updated Conceptual Design of HyS by SRNL 2005
Proof-of-Concept for PEM-based SDE* 2005
Pressurized, Elevated Temperature SDE Testing 2006
Continuous 100-hour Longevity Test 2007
Testing of 100 lph H2 Multi-cell Stack 2008

* SO2-Depolarized Electrolyzer
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HyS Process Simplified Flowsheet
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Integration of HyS with a Nuclear Heat Source
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Detailed Flowsheets and Process Analyses have been developed
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Nuclear Hydrogen Plant Design and Cost Study

Key design improvements:
Optimized heat integration between reactor, hydrogen plant and 

bottoming cycle

Improved thermal efficiency for HyS thru pinch analysis

Increased hydrogen production per PBMR by over 150%

Overall process efficiency = 37% (over 40% more H2 than 
conventional reactor+elect.)

Capital costs and cost of hydrogen estimated w/H2A; Baseline = 
$5.34/kg with range of $4.15 - $7.10/kg 
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HyS Process can also be coupled with solar reciever

Central Receiver Test Facility at Sandia National Lab
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Test Facility Capabilities at SNL Test Facility

5 MW total thermal power

Peak flux to 260 w/cm2

Illumination of target 
areas to 2,800 m2

Successfully 
demonstrated falling particle 
receiver operation

Could be used for HyS 
demonstration plant

•
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Solar tower matching

Data:
• Intermediate fluid He
• Hot sand storage ~1000 C
• Cold sand storage ~600 C
• Hot helium 950 C
• AVG thermal power 329 MW

(summer solstice) 
• Helium also provides reboiler heat
• Yr 2025 design eliminates He loop

82% 18%
He
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SO2-Depolarized Electrolysis (SDE)

Uses sulfur dioxide to depolarize the anode of a water 
electrolyzer and lower cell voltage (Standard Cell Potential 
reduced from 1.23 V to 0.158 V)

Produces sulfuric acid rather than oxygen at the anode; 
requires high temperature acid decomposition step to 
regenerate the SO2 and release oxygen

At practical conditions, electricity required per unit of 
hydrogen is reduced by up to 70% vs. water electrolysis

Economical design requires low cell voltage and high 
current density; goal set at 600 mV at 500 mA per cm2

Offer potential to leverage large investments and technical 
advances for proton-exchange-membrane (PEM) fuel cells
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SO2-Depolarized Electrolyzer Cell Potential

SDE half-cell reactions:
Anode: 2 H2O(l) + SO2(aq) → H2SO4(aq) + 2 H+ + 2 e–

Cathode: 2 H+ + 2 e– → H2(g)

Overall: 2 H2O(l) + SO2(aq) → H2SO4(aq) + H2(g) 

Standard cell potential: E° = -0.158 V at 25°C

= -0.173 V in 30% H2SO4
= -0.262 V in 50% H2SO4
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Electrolyzer Development Approach

Select electrolyzer design approach meeting goals and 
performance targets (PEM-type cell selected)

Conduct Component Development tasks to identify membrane, 
electrocatalysts and other key cell features, including materials 
and operating conditions.  Verify in small-scale electrolyzer.

Build and operate test facilities at prototypical T&P
Use versatile single cell electrolyzer (60-cm2 active area) for 
proof-of-concept tests leading to long-term lifetime tests

Scale-up to multi-cell stacks and larger cell sizes

Work with partners on alternative approaches (e.g. gap cell)

Demonstrate Integrated Lab-Scale Experiment with Bayonet 
Acid Decomposer (developed by SNL for S-I project)
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Reduction of Sulfur Deposition is a Key Technical Objective

SO2 can diffuse thru PEM
Reduction at cathode can result in 

S deposits
Certain designs and operating 

conditions avoid deposits
Multiple approaches

Modify membrane & 
catalyst
Modify operating conditions
Alternative cell design

Membrane thickness

Pt:  90.5 wt%
C:     7.87 wt%
S:     0.95 wt%
F:    0.68 wt%

Pt: 88.34 wt%
C:    9.43 wt%
S:    1.57 wt%
F:    0.66 wt%

Pt:  8.54 wt%
C:     44.1 wt%
S:     25.14 wt%
F:    22.21 wt%

Membrane thickness

Pt:  90.5 wt%
C:     7.87 wt%
S:     0.95 wt%
F:    0.68 wt%

Pt: 88.34 wt%
C:    9.43 wt%
S:    1.57 wt%
F:    0.66 wt%

Pt:  8.54 wt%
C:     44.1 wt%
S:     25.14 wt%
F:    22.21 wt%

Membrane thickness

Pt:  54.03 wt%
C:   41.21 wt%
S:   1.66 wt%
F:     3.1 wt%

Pt: 30.43 wt%
C:  56.32 wt%
S:    6.79 wt%
F:    6.47 wt%

Pt:      0.77 wt%
C:     19.63 wt%
S:     75.48 wt%
F:       4.12 wt%

Pt:   5.23 wt%
C:  53.75 wt%
S:    19.69 wt%
F:    21.32 wt%

Membrane thickness

Pt:  54.03 wt%
C:   41.21 wt%
S:   1.66 wt%
F:     3.1 wt%

Pt: 30.43 wt%
C:  56.32 wt%
S:    6.79 wt%
F:    6.47 wt%

Pt:      0.77 wt%
C:     19.63 wt%
S:     75.48 wt%
F:       4.12 wt%

Pt:   5.23 wt%
C:  53.75 wt%
S:    19.69 wt%
F:    21.32 wt%

MEA 9, N117 with Pt black catalyst

S layer

MEA 20, N115 with Pt/C catalyst
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Recent progress on preventing sulfur crossover

Developed new method of 
operating cell in SO2-limited 
condition to prevent S crossover

Completed 50 hour test run with 
no indication of sulfur

Other qualitative measures also 
indicated reduced sulfur at cathode

Test facility being modified for 
unattended operation to permit 
long-term testing

Major step in SDE development

Single Cell Electrolyzer (60 cm2 active area)

Effect of Reduced SO2 Concentration on Cell Voltage
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Commercial Scale HyS Electrolyzer Concept

• Bipolar cell arrangement

• Active cell area = 1 m2

• No. cells = 200

• Avg. cell voltage = 600 mV

• Current density = 500 mA/cm2

• Module current = 5000 amps

• Module voltage = 120 VDC

• DC power input = 600 kW

• H2 output = 37.6 kg/h

• H2 energy = 1.5 MWt (HHV)

3.5 m

200-Cell Electrolyzer Module
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Commercial Cell Room Arrangement

102 ft30 ft

Control Room

Utilities

Maintenance
Area

14 ft

30 ft

30 ft

Electrolyzer
Module

Rectifier

Anolyte Tank
and Pump

Catholyte Tank
and Pump

Electrolyzer Array 1 of  4

48-module Cell Room Arrangement (4 req’d).  H2 Output = 40 TPD each
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Cell voltage is important, but very low voltage (<600 mV) may not 
be necessary or optimum

Effect of SDE cell potential on HyS process performance
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Future Work

Continue electrolyzer development; identify optimum 
membrane and electrocatalyst; extend operation to more 
severe conditions; scale-up to larger capacities
Modify test facility for unattended operation and conduct 
long-term tests to demonstrate operation without sulfur 
accumulation
Upgrade test facilities for higher T&P operation (120°C, 10 
atm) using advanced high-temperature membranes
Design and build an Integrated Lab-Scale (ILS) Experiment 
of HyS, including high temperature acid decomposition and 
SO2/O2 separation (not funded at this time)
Design and build a 1-MWth Pilot Plant
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