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Outline - PBI Membranes

 

  Introduction and background - PBI

  PBI - Chemistry and sol-gel process

  Ionic conductivity & transport processes

  Fuel cell testing & operational durability

  Applications - Hydrogen pumping

  Summary & conclusions
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Proton Exchange Membrane 
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High Temperature Membranes

  Ease/eliminate humidification requirements

  Increase tolerance to fuel impurities (e.g., CO)

 Wider fuel choices

 Lower fuel reforming costs

  Improved electrode kinetics

  Higher conductivities

  Smaller heat exchangers/radiators
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  Phosphoric acid electrolyte

  Operate up to 200˚C

  Water management problems alleviated

  PBI polymer is produced commercially

  Conventional membrane process - 6-10 moles PA/PBI
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Poly[2,2’-(m-phenylene)-5,5’-bibenzimidazole]

IV ~ 0.5 - 0.8 dL/g

PBI for Fuel Cell Membranes
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Perceived Problems with PBI

  
•  Low mw’s (IV’s ≈ 0.5 - 0.8 dL/g)

•  Phosphoric acid loading

•  Phosphoric acid retention

•  Membrane durability
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Film Casting from PPA solutions
The PPA Process

  Films are cast directly from PPA solutions - no organic solvents

  Water is absorbed from the atm. - both PBI and PPA are hygroscopic

  PPA + H2O react to form PA insitu

  Sol-gel transition produces gel films with high acid content

  Gel films exhibit much different properties than imbibed

 or “dip and soak” membranes

 Chem. Mater. 2005, 17, 5328-5333.
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PPA Gel Film
[PA]/[PBI]  32/1
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PPA Film Hydrolysis
31P NMR
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Phosphorus NMR
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Ionic Conductivity
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Ionic Conductivity
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Baseline Data
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Proton conductivity = ~ 0.25 S/cm at 160 oC ~ 0.63 V @ 0.2 A/cm2, 160 oC
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Long-term Durability @ 160˚C
No humidification
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Long-term Durability @ 120˚C
No humidification

Degradation rate ~ 5 µV/hr
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PA Retention

5.8 µV/hour

C:  7.1 ng/cm2hr

A:  1.5ng/cm2hr

160 ˚C, Non-humidified 50 cm2, steady-state operation @ 0.2 A/cm2
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Load Cycling Test

Voltage drop

6.2 µV/hour @ OCV, 4.5 µV/
hour @ 0.2 A/cm2

28 µV/hour @ 0.6 A/cm2

Voltage drop is comparable
to static operation

Acid loss

18.2 ng/cm2hr @
cathode

9.8 ng/cm2hr @
anode

28 ng/cm2hr @ both
electrode sides

Constant stoic, 160 C500 cycles
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Shut down-Start up Testing

•  262 cycles completed

•  Degradation rate @0.2 A/cm2

     ~0.13mV per cycle

•  ~ 2000 hours total time
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Prototype 5 kW Residential Unit - Plug Power

Eliminate:
Large radiator
Humidifier
Water pump
Low temp shift
PROX
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Micro Portable Applications

  Fuel Cells generate power for laptops,
GSP and communication systems

  Power range: 5 W – 50 W

  Advantages: Independent from power grid,
less weight and waste than batteries, cost
effective

  Based on liquid fuels, e. g. Methanol

  BASF Fuel Cell provides the core products
for this technology

UltraCell
TM
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Back-up Power Systems

  Fuel Cells provide backup power for
telecommunication, emergency centers,
hospitals etc. when the power grid fails

  Power range: 1 kW to 10 kW

  Advantages: Silent, low emissions,
high reliability

  BASF Fuel Cell provides core
products for this technology
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Dry Operation

Wet Operation
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Durability

Wet 2.8% RHP
ot

en
tia

l (
m

V
)

Lifetime (hrs)

Dry

~4000 hrs

160 ˚C



28

Hydrogen Pumping on Reformate
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Stack Design and Build

  

•  H2 Pump stack

•  120 cells

•  Capability ~ 20 kg H2/day

H2 Pump™
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System Plan - 2009
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Potential Benefits of a Hi-Temp Hydrogen Pump

Natural
Gas

Methanol

Biofuels

Coal
•  Very high efficiencies

•  Purification of gas streams

Removal of CO, CO2 from fuel streams

Separation of hydrogen from carrier gases

•  Applicable to natural gas, coal, methanol reformates

•  Pressurization of hydrogen gas streams

•  Removes complicated oxygen reduction reactions
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Summary & Conclusions

  

•  Chemistry, process, structure and morphology important for determining

 properties - bulk and NMR measurements

•  PA level also effects conductivity

•  Excellent long-term stability at 120-180˚C, maybe even greater range

•  Early cyclic load testing and thermal testing show low degradation rates

•  Phosphoric acid loss rates measured under different static and cyclic 

        operating conditions indicate 10,000’s hours lifetime

•  Early applications in residential, portable, back-up 

and others are being tested
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