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Outline - PBI Membranes

 

  Introduction and background - PBI

  PBI - Chemistry and sol-gel process

  Ionic conductivity & transport processes

  Fuel cell testing & operational durability

  Applications - Hydrogen pumping

  Summary & conclusions



3

Proton Exchange Membrane 

H2

2H+  +  2e-

H2 2H+  +  2e-
Anode

O2 (air)

H2O

Cathode
1/2 O2 + 2H+ + 2e- H2O

H+

H+

H+

e-



4

High Temperature Membranes

  Ease/eliminate humidification requirements

  Increase tolerance to fuel impurities (e.g., CO)

 Wider fuel choices

 Lower fuel reforming costs

  Improved electrode kinetics

  Higher conductivities

  Smaller heat exchangers/radiators
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  Phosphoric acid electrolyte

  Operate up to 200˚C

  Water management problems alleviated

  PBI polymer is produced commercially

  Conventional membrane process - 6-10 moles PA/PBI
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Poly[2,2’-(m-phenylene)-5,5’-bibenzimidazole]

IV ~ 0.5 - 0.8 dL/g

PBI for Fuel Cell Membranes
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Perceived Problems with PBI

  
•  Low mw’s (IV’s ≈ 0.5 - 0.8 dL/g)

•  Phosphoric acid loading

•  Phosphoric acid retention

•  Membrane durability
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Film Casting from PPA solutions
The PPA Process

  Films are cast directly from PPA solutions - no organic solvents

  Water is absorbed from the atm. - both PBI and PPA are hygroscopic

  PPA + H2O react to form PA insitu

  Sol-gel transition produces gel films with high acid content

  Gel films exhibit much different properties than imbibed

 or “dip and soak” membranes

 Chem. Mater. 2005, 17, 5328-5333.
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PPA Gel Film
[PA]/[PBI]  32/1
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PPA Film Hydrolysis
31P NMR
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Phosphorus NMR

2 H3PO4 H4P2O7     +     H2O

0 ppm 0 ppm -13 ppm

0 time 3 hours

Po           0 ppm

Pe        -13 ppm

Pm       -32 ppm

P

O

HO O

OH

P

O

O

OH

P

O

OH

OH

n

Pe
Pm Po

HO P

O

OH

OH

Hydrolysis



13

Ionic Conductivity
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Ionic Conductivity
C

on
du

ct
iv

ity
 (S

/c
m

)

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200 250

Nafion
PBI from TFA direct casting (CWRU)
PBI from DMAc  (CWRU)
Bjerrum
2,5-PPBI from PPA Process
Seg. Block Copolymer
Funct. Polymer

Temperature  ˚C



16

Baseline Data
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Proton conductivity = ~ 0.25 S/cm at 160 oC ~ 0.63 V @ 0.2 A/cm2, 160 oC
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Long-term Durability @ 160˚C
No humidification
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Long-term Durability @ 120˚C
No humidification

Degradation rate ~ 5 µV/hr
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PA Retention

5.8 µV/hour

C:  7.1 ng/cm2hr

A:  1.5ng/cm2hr

160 ˚C, Non-humidified 50 cm2, steady-state operation @ 0.2 A/cm2
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Load Cycling Test

Voltage drop

6.2 µV/hour @ OCV, 4.5 µV/
hour @ 0.2 A/cm2

28 µV/hour @ 0.6 A/cm2

Voltage drop is comparable
to static operation

Acid loss

18.2 ng/cm2hr @
cathode

9.8 ng/cm2hr @
anode

28 ng/cm2hr @ both
electrode sides

Constant stoic, 160 C500 cycles
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Shut down-Start up Testing

•  262 cycles completed

•  Degradation rate @0.2 A/cm2

     ~0.13mV per cycle

•  ~ 2000 hours total time
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Prototype 5 kW Residential Unit - Plug Power

Eliminate:
Large radiator
Humidifier
Water pump
Low temp shift
PROX
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Micro Portable Applications

  Fuel Cells generate power for laptops,
GSP and communication systems

  Power range: 5 W – 50 W

  Advantages: Independent from power grid,
less weight and waste than batteries, cost
effective

  Based on liquid fuels, e. g. Methanol

  BASF Fuel Cell provides the core products
for this technology

UltraCell
TM
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Back-up Power Systems

  Fuel Cells provide backup power for
telecommunication, emergency centers,
hospitals etc. when the power grid fails

  Power range: 1 kW to 10 kW

  Advantages: Silent, low emissions,
high reliability

  BASF Fuel Cell provides core
products for this technology
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Dry Operation

Wet Operation
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Durability
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Hydrogen Pumping on Reformate
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Stack Design and Build

  

•  H2 Pump stack

•  120 cells

•  Capability ~ 20 kg H2/day

H2 Pump™
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System Plan - 2009
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Potential Benefits of a Hi-Temp Hydrogen Pump

Natural
Gas

Methanol

Biofuels

Coal
•  Very high efficiencies

•  Purification of gas streams

Removal of CO, CO2 from fuel streams

Separation of hydrogen from carrier gases

•  Applicable to natural gas, coal, methanol reformates

•  Pressurization of hydrogen gas streams

•  Removes complicated oxygen reduction reactions
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Summary & Conclusions

  

•  Chemistry, process, structure and morphology important for determining

 properties - bulk and NMR measurements

•  PA level also effects conductivity

•  Excellent long-term stability at 120-180˚C, maybe even greater range

•  Early cyclic load testing and thermal testing show low degradation rates

•  Phosphoric acid loss rates measured under different static and cyclic 

        operating conditions indicate 10,000’s hours lifetime

•  Early applications in residential, portable, back-up 

and others are being tested
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